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Abstract In this study, we deal with the bottleneck assignment problem in vector case. This problem
is NP-complete. We show an idea that we use a clustering method to divide the original problem into
sub problems. Each set of vertices is divided to subsets by a non-hierarchical clustering method. We
make the optimal combination of the subsets, then vertices in the subset are corresponded according to
the subsets’ combinations. We show the effect of this idea by the numerical experiments.
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1. INTRODUCTION

The most well-known assignment problem is the linear sum assignment problem. It has the polynomial
time algorithm and many efficient algorithms have been proposed [1]. The problem is formulated as
follows:

A,B : n vertices’ sets respectively.We denote the element in A is ai, and also in B is bj ,
cij : edge’s cost between ai and bj ,
π : a permutation {1, 2, . . . , n} → {1, 2, . . . , n},
Objective function is

f =
n∑

i=1

ciπ(i),

then find π̃ such that π̃ minimizes f .

Fig. 1. Assignment problem. Each vertex ai(∈ A) is assigned to distinct bj(∈ B).

The assignment problem has various versions with respect to the objectives [2]. If we are going to
minimize the maximum cost of the corresponded pair, the problem is called the bottleneck assignment
problem [3]. The objective is

f = max
1≤i≤n

ciπ(i) . (1)

Also, polynomial time algorithms have been proposed for the bottleneck assignment problem.

In this paper we extend the bottleneck assignment problem to a case that costs are given by vectors.
Here we assume that a cost vector cij is represented as a sum of the vectors ai and bj .

A formal description of our problem is as follows. Let A and B be sets of m dimensional vec-
tors. We denote each element of A by ai = (a

(1)
i , a

(2)
i , . . . , a

(m)
i ) and each element of B by bj =

(b
(1)
j , b

(2)
j , . . . , b

(m)
j ). We assume that a

(1)
i , a

(2)
i , . . . , a

(m)
i and b

(1)
j , b

(2)
j , . . . , b

(m)
j are nonnegative and

define a sum of vectors ai + bj as

ai + bj = (a
(1)
i + b

(1)
j , a

(2)
i + b

(2)
j , . . . , a

(m)
i + b

(m)
j ). (2)
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Abstract This study focuses on the corporate taxation on entertainment and social 
expenses which is provided with “extra provisions” in Article 61-4 (hereinafter referred 
to as the Special Measures Law) of the special Taxation Measures Law. The purpose of 
this research is to deepen the understanding of correct entertainment expenses etc. by 
re-examining the contents of the three-requirement theory, which is regarded as a 
general theory of taxing requirements such as correct entertainment expenses. 
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1. はじめに 

本研究の対象は、租税特別措置法1 第 61 条の 4（以下特別措置法という）法律上の「別

段の定め」が設けられている交際費課税制度2 についてである。その研究目的は、交際費等

3の課税要件の通説とされる三要件説等の内容を再検証し、さらに、主要判例と関連する判

例を通して、関係する法人税、所得税、寄付金等について検討することで、より正しい交際

費等4 の理論的理解を深めることにある。 
主要研究判例には、萬有製薬の東京地裁平成 14 年 9 月 13 日判決（平成 11 年（行ウ）第

20 号）法人税更正処分取消請求事件.第一審と東京高裁平成 15 年 9 月 9 日判決（平成 14 年

（行コ）第 242 号）5 法人税更正処分取消請求控訴事件.控訴審 1)6 を中心に用いた。しか

し、本研究の根拠づけ並びに判断基準の基礎となった判例が存在したのかを検証するため、

過去の判例の理解を深めることを最初に行うこととした。このことで、交際費課税の解釈の

変遷が若干でも理解されることを期待したものである。さらに、分析に必要な判例を検討に

用いて考察した。 
萬有製薬の判例以前の 2 つの代表的な判例を提示し考察を深めることは交際費課税の要

件の判断基準を考察するために意義のあることと理解したことによる。 
 

2. 東京地裁昭和 44 年 11 月 27 日（興安丸事件）7 
 本判例は、交際費と広告宣伝費との区分における事案である。しかも、本事業関係者には

不特定多数の者を含まないという事案であった。具体的には、長年引き上げ船に使用されて

いた船を遊覧船として就航させるにあたり開催されたレセプションのために支出された費

用が、広告宣伝費であって、特別措置法（昭和 34 年法律第 77 号による改正前）63 条第 2
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Next, let us consider the case that m = 2. In this case again the total sum of c(1)iπ(i) and that of c(2)iπ(i)

do not depend on π. We denote 1
n

∑n
i=1(a

(1)
i + b

(1)
i ) by µ1 and 1

n

∑n
i=1(a

(2)
i + b

(2)
i ) by µ2. For general

m, the situation is unchanged.

Thus, we have the following Property 1.

Property 1 For each k, the total sum of c(k)iπ(i) does not depend on the selection of permutation π and
is constant.

4. CLUSTERING

Clustering methods are being more and more important recently. It is used especially in the machine
learning. Fig.2 shows the categorized diagram of clustering methods.

Fig. 2. Categorization of Clustering Methods [11] .

We use k-means method to divide the vertices sets A and B into k subsets. We denote the subsets
by A(p) and B(q),respectively.

k-means method is the classical non-hierarchical clustering one. In unsupervised learning, k-means
method is the most widely used. We find our problem conforms to the unsupervised learning. Because
each data is not related to other qualities. We give only correlation coefficients to each two scalar’s
sequences of a

(k)
i and a

(k+1)
i . Similarly, for b

(k)
j and b

(k+1)
j . We have to notice that k-means does not

divide the set equally to the subsets.

When we use k-means method, we give the integral value k which is the number of clusters. The
optimal k-partitions is equivalent to the k-center problem. The k-center problem is NP-hard even for
k = 2. So k-means method uses the greedy algorithm to find k clusters’ each center point [12].

It means that k-means method gives an approximation k subsets’ partition of A. Similarly, for B.

5. ALGORITHM FOR PROBLEM 1

Hereafter we consider the case that the dimension of error vector is 2. Firstly, we assume the following
two properties.

Assumption 1

(i) Each vector’s dimension is 2, that is, m = 2.

(ii) µ1 = µ2. We denote it µ.

(ii) is not essential but it is for treating the problem more easily.

We denote this sum of vectors by cij , namely cij = ai + bj . Let us consider the following problem:
find a permutation π of a set {1, 2, . . . , n} such that

Tm(π) = max{ max
1≤i≤n

c
(1)
iπ(i), max

1≤i≤n
c
(2)
iπ(i), · · · , max

1≤i≤n
c
(m)
iπ(i) } (3)

is the minimum.

More generally the problem is formulated as a multi-index bottleneck assignment problem. A multi-
index bottleneck assignment problem is introduced in relation to the bus drivers’ rostering problem and it 
is NP-complete [4]. That problem is multi-index scalar case one. Therefore for the vector case’s bottleneck 
assignment problem, we deal with the problem in 2-index, that is, the combination between 2 sets of n 
vectors.

From the above assumptions, our problem is formulated as follows:

Problem 1 Given 2 sets of n vectors A and B, find the permuation π that minimizes

Tm(π) = max
1≤k≤m

{max
i

c
(k)
iπ(i)}, (4)

where c
(k)
iπ(i) = a

(k)
i + b

(k)
π(i).

In our former research [9] we dealt with the balanced assignment problem in 2 dimensional vector
case. On the other hand, in [5], [6], [7], [8] we considered the bottleneck assignment problem in 2
dimensional vector case. In this paper we show the idea that we apply clustering methods to divide
the problem into partial ones. We think it is more efficient than the partition method that I used in our
previous studies [8],[9].

Remark In general assignment problems, edges’ costs are given independently. However, in our
problem they are introduced by the vertices’ costs. Hence we call this the ‘modified’ problem.

2. FORMULATION AS AN INTEGER PROGRAMMING PROBLEM

Problem 1 is formulated to the following 0-1 integer programming problem.

Problem 2

Minimize f = t

subject to

(a
(k)
i + b

(k)
j )xij ≤ t, (i, j = 1, 2, . . . , n; k = 1, 2, . . . ,m);

n∑
i=1

xij = 1, (j = 1, 2, . . . , n);

n∑
j=1

xij = 1, (i = 1, 2, . . . , n);

xij ∈ {0, 1}, (i, j = 1, 2, . . . , n).

Unlike the scalar case’s assignment problem, no polynomial time algorithm exists to obtain the integer
solution to this problem, and unfortunately, the relaxation method is not effective for this type of integer
programming problems [10].

3. PROPERTY OF THE PROBLEM

Before describing our algorithm for Problem 1, let us consider the property of our problem.

At first, let us consider the case that m = 1, i.e., ai and bj are scalars. It is trivial that the total sum
of ciπ(i) does not depend on π, i.e.,

n∑
i=1

ciπ(i) =
n∑

i=1

ai +
n∑

i=1

bπ(i) =
n∑

i=1

ai +
n∑

j=1

bj = const. (5)
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xij = 1, (i = 1, 2, . . . , n);

xij ∈ {0, 1}, (i, j = 1, 2, . . . , n).

Unlike the scalar case’s assignment problem, no polynomial time algorithm exists to obtain the integer
solution to this problem, and unfortunately, the relaxation method is not effective for this type of integer
programming problems [10].

3. PROPERTY OF THE PROBLEM

Before describing our algorithm for Problem 1, let us consider the property of our problem.

At first, let us consider the case that m = 1, i.e., ai and bj are scalars. It is trivial that the total sum
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TABLE I. n = 40
Solution Num. of combined data

Cora,Corb Exact Approx. Rel.Error in clusters
0.0, 0.0 22.039116 22.688025 0.0294 28

0.5 21.018795 21.778922 0.0362 28
0.7 20.900123 21.743491 0.0404 28
0.9 20.862537 21.461411 0.0287 29

0.5,0.5 20.996586 21.632746 0.0303 28
0.7 20.827939 21.538548 0.0341 30
0.9 20.826877 21.574567 0.0359 28

0.7,0.7 20.807930 21.3162220 0.0244 30
0.9 20.808607 21.4280423 0.0298 29

0.9,0.9 20.722833 21.430077 0.0341 30
Rel. Error shows the relative error of aprroximation solution, that is, (Approx. − Exact)/Exact.

We execute only one case for each n here. We should apply our algorithm to many data sets and get
more results.

TABLE II. n = 80
Solution Num. of combined data

Cora,Corb Exact Approx. Rel.Error in clusters
0.0, 0.0 21.196701 21.766160 0.0269 70

0.5 20.697286 21.687800 0.0479 70
0.7 20.996616 21.873512 0.0418 69
0.9 21.171483 21.977872 0.0381 68

0.5,0.5 21.076558 22.112139 0.0491 65
0.7 20.846579 21.523213 0.0325 73
0.9 20.743654 21.523213 0.0376 66

0.7,0.7 20.753700 21.6102689 0.0413 71
0.9 20.677560 21.870456 0.0577 69

0.9,0.9 20.753692 21.289524 0.0258 73

TABLE III. n = 120
Solution Num. of combined data

Cora,Corb Exact Approx. Rel.Error in clusters
0.0, 0.0 21.216827 22.121165 0.0426 104

0.5 21.488096 22.484232 0.0464 92
0.7 21.420816 22.325154 0.0422 89
0.9 21.118222 22.525889 0.0667 92

0.5,0.5 21.118222 22.355431 0.0586 94
0.7 21.118222 22.300793 0.0560 95
0.9 21.118222 22.330413 0.0574 91

0.7,0.7 21.118222 22.044003 0.0438 89
0.9 20.987568 21.843143 0.0408 85

0.9,0.9 20.994517 21.538125 0.0259 91

7. CONCLUSIONS

In this paper, we considered a permutation that minimizes the maximum value in each sum of
components given by 2 dimensional vectors. We first formulated this problem as an integer programming
problem. We used the clustering method to divide the problem to sub problems and we show the
approximation algorithm. We showed that idea is effect by the numerical experiments. Complete the
numerical experiments of Algorithm 1 is left to further researches.

1SCIP (Solving Constraint Integer Programs) is a non-commercial MIP solver developed at Zuse Institute Berlin. http://scip.zib.de/

Here we show the algorithm for Problem 1.

Algorithm 1

Step 1 :

1) Give clusters’ number k. We assume k ≤ 10.
2) Divide vertices set A to k subsets A(1), A(2), · · · , A(k) by k-means method. We denote the

center of A(i) as cA(i).
Similarly for the set B and we get B(1), B(2), · · · , B(k). Also cB(j) is the center of B(j).

Step 2 :

Make the optimal combination π̃ for cA(l) to cB(π̃(l)), (l = 1, 2, . . . k).

Step 3 :

MaxVal: the maximum value of vectors’ sums by the combination.

For each l; (l = 1, 2, . . . , n),

1) Sort al,i(∈ A(l)) in ascending order by ||al,i−cA(l)||max . Again we denote the sorted elements
by al,i in i’s order,

2) Sort bπ̃(l),j(∈ B(π̃(l))) in descending order by ||bπ(l),j − cBπ̃(l)||max , Again we denote the
sorted elements by bπ(l),j in j’s order,

3) Define num(A(l)) as the number of elements A(l), num(B(π(l))) as the same for B(π(l)).
Set MinNum ← min{num(A(l)), num(B(π(l)))},

4) For i = 1, 2, . . . ,MinNum , combine

cl,i ← al,i + bπ̃(l),i,

5) If max{c(1)l,i , c
(2)
l,i } > MaxVal then MaxVal ← max{c(1)l,i , c

(2)
l,i }.

Step 4 :

1) Collect remainders that are not combined in Step 3. We represent them as Ar, Br respectively.
Here we notice that the number of elements in Ar and that of in Br is equal.

2) Find the optimal combination of each element in Ar to that in Br. For that purpose we solve
the mixed integer programming problem(MIP) of Ar and Br. It is obvious that solving this MIP
does not require much time, because the number of remainders is much smaller than that of
original A and B.

Step 5 :

Output the solution: MaxVal and the combination.

6. NUMERICAL EXPERIMENTS

We prepare the test data for the numerical experiments as follows : For vectors ai = (a
(1)
i , a

(2)
i )

and bj = (b
(1)
j , b

(2)
j ), (i, j = 1, 2, . . . , n), let a(1)i , a

(2)
i ; b(1)j , b

(2)
j follow the normal distribution that the

mean is 10 and the variance 1, respectively. Here Cora is the correlation coefficient of a
(1)
i and a

(2)
i ,

similarly Corb is that of b
(1)
j and b

(2)
j . When the number of vectors n is not so large, that is, at most

100, 0 ≤ Cora < 0.5 means the a
(1)
i and a

(2)
i have little correlative relation. So we consider that it is

sufficient to vary Cora to 0.0, 0.5, 0.7, and 0.9. It is same for Corb and (b
(1)
j , b

(2)
j ).

Each pair of Cora and Corb, we prepare several different data sets for n = 40, 80, 120. For each data
set, we solve the problem by Algorithm 1, then compare to the exact solutions. Exact solutions are found
by solving Problem 2, that is MIP, using the solver SCIP1. We denote results here for n = 40, 80, 120
in Table I,II,III, respectively.

In almost all cases Rel. Error are in +5%, so we can say that the proposed algorithm, dividing the
original bottleneck assignment problem to sub problems by the clustering method, is the effective idea.
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2) Sort bπ̃(l),j(∈ B(π̃(l))) in descending order by ||bπ(l),j − cBπ̃(l)||max , Again we denote the
sorted elements by bπ(l),j in j’s order,

3) Define num(A(l)) as the number of elements A(l), num(B(π(l))) as the same for B(π(l)).
Set MinNum ← min{num(A(l)), num(B(π(l)))},

4) For i = 1, 2, . . . ,MinNum , combine

cl,i ← al,i + bπ̃(l),i,

5) If max{c(1)l,i , c
(2)
l,i } > MaxVal then MaxVal ← max{c(1)l,i , c

(2)
l,i }.

Step 4 :

1) Collect remainders that are not combined in Step 3. We represent them as Ar, Br respectively.
Here we notice that the number of elements in Ar and that of in Br is equal.

2) Find the optimal combination of each element in Ar to that in Br. For that purpose we solve
the mixed integer programming problem(MIP) of Ar and Br. It is obvious that solving this MIP
does not require much time, because the number of remainders is much smaller than that of
original A and B.

Step 5 :

Output the solution: MaxVal and the combination.

6. NUMERICAL EXPERIMENTS

We prepare the test data for the numerical experiments as follows : For vectors ai = (a
(1)
i , a

(2)
i )

and bj = (b
(1)
j , b

(2)
j ), (i, j = 1, 2, . . . , n), let a(1)i , a

(2)
i ; b(1)j , b

(2)
j follow the normal distribution that the

mean is 10 and the variance 1, respectively. Here Cora is the correlation coefficient of a
(1)
i and a

(2)
i ,

similarly Corb is that of b
(1)
j and b

(2)
j . When the number of vectors n is not so large, that is, at most

100, 0 ≤ Cora < 0.5 means the a
(1)
i and a

(2)
i have little correlative relation. So we consider that it is

sufficient to vary Cora to 0.0, 0.5, 0.7, and 0.9. It is same for Corb and (b
(1)
j , b

(2)
j ).

Each pair of Cora and Corb, we prepare several different data sets for n = 40, 80, 120. For each data
set, we solve the problem by Algorithm 1, then compare to the exact solutions. Exact solutions are found
by solving Problem 2, that is MIP, using the solver SCIP1. We denote results here for n = 40, 80, 120
in Table I,II,III, respectively.

In almost all cases Rel. Error are in +5%, so we can say that the proposed algorithm, dividing the
original bottleneck assignment problem to sub problems by the clustering method, is the effective idea.
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