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Abstract Clustering is a fundamental and important method in data science. A large data set is 
categorized and divided into some subsets that each has a same property. To deal with subsets partitioned 
of an original data set makes handling data easier. But we are always confronted with the problems how 
many subsets are appropriate, and is the division good partition. Many indices have been proposed to 
evaluate the quality of the divided subsets. In this research, we focus on indices of clustering, especially 
for K-means method.
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1. INTRODUCTION

Clustering methods are effective for a data analysis. They are categorized into hierarchical and non 
hierarchical one. As a non hierarchical and unsupervised learning algorithm, K-means is the most famous 
and widely used.

When we use K-means, we need to give an appropriate K. But we can not guess which number K 
is suitable to make a good partition. Fortunately K-means does not require a long time for 
calculation, hence we can make subsets for different K by applying K-means again and again. 
However we need some criteria that show how well the partition.

In section 3 we show some simple methods to find the proper number K of a partition. In section 4 
we report criteria that indicate goodness of a partition.

2. K-MEANS METHOD

At first, we show the problem that K-means method solves.
Problem 1
X : a set of n vectors x1, x2, · · · , xn. xi’s dimension is m.
K : given. The number of subsets, that is, clusterings.
Ci : subsets divided of X . Each xj belongs to exactly one Ci.
µi: mean value of xj ∈ Ci.

Define the squared error in Ci as follows:

f(Ci) =
∑

xj∈Ci

∥xj − µi∥2.

Then find a partition that minimizes the sum of the squared error for all i,

f(X) =

K∑
i=1

∑
xj∈Ci

∥xj − µi∥2.

□
This problem is known to an NP-hard problem. K-means method is based on a greedy algorithm,

hence it gives an approximation solution for Problem 1.
Many algorithms of K-means method have been proposed. They are essentially same. The differences

are expectations to improve a computational complexity and to get a better solution.
K-means, outline
Step 1: Select an initial partition with K clusters. Repeat Step 2 and Step 3 until each Ci stabilizes.
Step 2: Make a new partition by assigning each pattern to its closest Ci’s center.
Step 3: Compute the new Cis’ centers.

3. THE NUMBER OF PARTITIONS

When we apply K-means to X , we have to give the number of partitions, K. We can not know which
K is appropriate. In this section we show some methods to determine K. They do not give the correct
K essentially.

Elbow method is well-known one. It is a primitive and old technique to find K.
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B. The C index

c =
Sw − Smin

Smax − Smin

where

Sw : sum of the within cluster distances. Ci has ni points, hence there are ni(ni − 1)/2
distinct pairs in Ci. Let nw = ni(ni − 1)/2.

Smin : sum of the smallest nw distances between all pairs of points in X .
X has n(n− 1)/2 distinct pairs

Smax : sum of the greatest nw distances between all pairs of points in X .

c statisfies c ∈ [0, 1]. A low value indicates a partion is good.

C. The Baker-Hubert Gamma index

For two indieces i, i′, we define uii′ as follows:

uii′ = 1 if xi and xi′ are in the same cluster,
uii′ = 0 otherwise.

If

(i) d(xi,x
′
i) < d(xj ,x

′
j) and uii′ < ujj′

or
(ii) d(xi,x

′
i) > d(xj ,x

′
j) and uii′ > ujj′ ,

then we call a quadruple (i, i′, j, j′) concordant. On the other hand if

(iii) d(xi,x
′
i) < d(xj ,x

′
j) and uii′ > ujj′

or
(iv) d(xi,x

′
i) > d(xj ,x

′
j) and uii′ < ujj′ ,

then we call a quadruple (i, i′, j, j′) discordant.
We take quadruples (i, i′, j, j′) for all xi ∈ X . Then we count the concordants and the discordants.
The Baker-Hubert Gamma index is given as follow:

Γ =
S+ − S−

S+ + S− ,

where

S+ : the number of concordant quadruples,
S− : the number of discordant quadruples.

Γ statisfies Γ ∈ [−1, 1]. A high value indicates a partion is good.

D. Yule’s index

For xi,xj ∈ X, (i ̸= j), take d(xi,xj). We denote the number of d(xi,xj) within same cluster by
nw and that of between clusters by nb. nw + nb = n(n− 1)/2.

We take nw smallest d(xi,xj), then we define a as the number of them within same cluster and b as
between clusters. Similary we take nb largest d(xi,xj), then we define c as the number of them within
same cluster and d as between clusters.

For the numbers a, b, c, d, Yule index is defined as follows:

yule =
ad− bc

ad+ bc
.

A high value indicates a partion is good.

A. Rule of thumb

It is known that

K ∼=
√

n

2
.

There are no theoretical grounds for this number.

B. Based on distortion

This is a theoretical method and highly effective for many problems. The procedure is based on
distortion in cluster dispersion.
Step 1: Apply K-means using different numbers of clusters K. Then calcuate the distortions

d̂K =
1

m
min

c1,...,··· ,cK

E[(xi − cxi)
TΓ−1(xi − cxi)]

for each K, where c1, c2, . . . , cK are the center of K clusters and cxi is the closest to xi. Γ is a
covariance matrix.
Step 2: Select a transformation power Y > 0. Y = p/2 is a typical value.
Step 3: Calculate the “jumps”

JK = d̂−Y
K − d̂−Y

K−1.

Step 4: Estimate the number of clusters in the dataset by K∗ = argmaxK JK . K∗ is the largest jump
and gives the value we seek.

C. Elbow Method

For k = 2, 3, 4, . . ., solve Problem 1 by K-means. If f(X)’s value decreases sharply at some value
k, such k is the value that we search and called an Elbow point. This procedure is simple and easy. But
f(X) do not always have an Elbow point. That is, if f(X) decreases gradually, we can not identify such
a point.

4. INDICES

Many indices are proposed to evaluate the result of clustering. Most of indices are a measure of the
compactness and separation of clusters. Here we enumerate them and make their definitions clear.

Notation

X ∋ x1,x2, . . . ,xn : Vectors to be partitioned.
d(x,y) : distance between x and y.
C1, C2, . . . , Cm : subsets of X by a clustering. Use C(xi) to denote the subset that xi belongs to.
n1, n2, · · · , nm : the number of points in C1, C2, · · · , Cm, respectively.

A. Silhouette index

Sil =
1

n

∑
xi∈X

s(xi)

where

a(i) : mean of d(xi,x
′
i) for x′

i ∈ C(xi),

b(i) : min
Ck ̸=C(xi)

{meanx′
i∈Ck

d(xi,x
′
i)},

s(xi) =
b(i)− a(i)

max{a(i), b(i)}
.

A high value of Sil indicates a partion is good.
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E. Dunn’s index

We denote the miminal distance between points of different clusters by dmin, and the largest distance
within a cluster distance by dmax.

The Dunn index is given as the quotient of dmin and dmax :

dunn =
dmin

dmax
.

dunn ∈ [0,∞). Good partitions are indicated by high values of dunn.

F. Kendall’s tau

This index is based on the quadruple counts as for Baker-Hubert Gamma index.

tau =
S+ − S−

N(N − 1)/2
,

where
S+ : The number of concordant quadruples,
S− : The number of discordant quadruples.

tau statisfies tau ∈ [−1,+1]. A high value indicates a g partition is good.

5. CONCLUSION

Firstly, we show some simple methods to find the appropriate number of subsets. Secondly, we report
criteria to evaluate a partition.

Apply these methods and use criteria for sample data, then show effects of them is left for further
studies.
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